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SUMMARY

In cancer genomics, recurrence of mutations in inde-
pendent tumor samples is a strong indicator of func-
tional impact. However, rare functional mutations
can escape detection by recurrence analysis owing
to lack of statistical power. We enhance statistical
power by extending the notion of recurrence of
mutations from single genes to gene families that
share homologous protein domains. Domain muta-
tion analysis also sharpens the functional interpreta-
tion of the impact of mutations, as domains more
succinctly embody function than entire genes. By
mapping mutations in 22 different tumor types to
equivalent positions inmultiple sequence alignments
of domains, we confirm well-known functional muta-
tion hotspots, identify uncharacterized rare variants
in one gene that are equivalent to well-characterized
mutations in another gene, detect previously un-
known mutation hotspots, and provide hypotheses
about molecular mechanisms and downstream ef-
fects of domain mutations. With the rapid expansion
of cancer genomics projects, protein domain hotspot
analysis will likely provide many more leads linking
mutations in proteins to the cancer phenotype.

INTRODUCTION

The landscape of somatic mutations in cancer is extraordinarily

complex, making it difficult to distinguish oncogenic alterations

from passenger mutations. Many approaches use the recur-

rence of alterations in a single gene across tumor samples to

identify potential driver genes. However, the molecular functions

of genes are often pleiotropic, and in many cases it may not

be a gene as an entity itself but rather the specific function of

a gene or a set of genes that is under selective pressure in

cancer. For example, in T cell acute lymphoblastic leukemia,

the transmembrane signaling receptor NOTCH1 is activated by

mutations in the heterodimerization and the PEST domains

(rich in proline [P], glutamic acid [E], serine [S], and threonine

[T]; Weng et al., 2004), while in squamous cell carcinomas, notch

signaling has a tumor-suppressive role and notch receptors

(NOTCH1–NOTCH4) are inactivated by mutations in the ligand
Cell
binding epidermal growth factor (EGF)-like domains (Wang

et al., 2011). Thus, an alternative approach to assessing the rele-

vance of somatic alterations is to determine the recurrence of

mutations in genes involved in similar molecular functions. One

powerful method for systematically assessing common biolog-

ical function of genes is through the analysis of protein domains,

which are evolutionarily conserved, structurally related func-

tional units encoded in the protein sequence of genes (Holm

and Sander, 1996; Chothia et al., 2003). By coupling the obser-

vation of mutations across genes in a domain family together,

it may be possible to identify additional functional alterations

that confer a selective, functional advantage to cancer cells

and learn more about the details of pathway organization down-

stream of activated domains.

Large cross-institutional projects, such as the Cancer Genome

Atlas (TCGA), have recently profiled the major human cancer

types genomically, including glioblastoma (McLendon et al.,

2008), lung (Hammerman et al., 2012; Ding et al., 2008), ovarian

(Bell et al., 2011), breast (Koboldt et al., 2012), endometrial (Kan-

doth et al., 2013), kidney (Creighton et al., 2013), and colorectal

cancer (Cancer Genome Atlas Network, 2012). Through whole-

exome sequencing of tumor-normal pairs, these and other

studies have provided catalogs of somatically mutated genes

that are frequently altered and therefore likely associated with

disease development. However, despite a collection of mutation

data from nearly 5,000 samples encompassing 21 tumor types,

the results from a recent pan-cancer study illustrate that by using

recurrence of mutations in genes, thousands of samples per

tumor type are needed to confidently identify genes that are

mutated at low but clinically relevant frequencies (2%–5%) (Law-

rence et al., 2014).

Several analytical approaches have been developed to detect

genes associated with oncogenesis (Gonzalez-Perez and Lo-

pez-Bigas, 2012; Dees et al., 2012; Lawrence et al., 2014). One

of these widely applied algorithms, MutSigCV, compares the

gene-specific mutation burden to a background model using

silent mutations in the gene and gene neighborhood as well as

contextual information (DNA replication timing and general level

of transcriptional activity) to estimate the probability that the

gene is significantly mutated (Lohr et al., 2012; Lawrence et al.,

2014). Additional approaches have been developed to predict

the functional impact of specific amino acid changes. These

approaches generally rely on analyzing physico-chemical prop-

erties of amino acid substitutions (e.g., changes in size and po-

larity), structural information (e.g., hydrophobic propensity and

surface accessibility), and the evolutionary conservation of the
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mutated residues across a set of related genes (Reva et al., 2011;

Yue et al., 2006; Bromberg et al., 2008; Ng and Henikoff, 2003;

Adzhubei et al., 2010). Other approaches analyze mutations

across sets of functionally related genes to test for a possible

enrichment of mutation events in signaling pathways (Cerami

et al., 2010; Ciriello et al., 2012; Hofree et al., 2013; Torkamani

and Schork, 2009) or investigate how alterations/modifications

alter protein-protein or protein-nucleic interactions (Betts et al.,

2015) as well as phosphorylation-dependent signaling motifs

(Reimand and Bader, 2013; Reimand et al., 2013).

Protein domains represent particular sequence variants that

have been formed over evolution by duplication, recombination,

or both (Holm and Sander, 1996; Chothia et al., 2003). Domains

often encode structural units associated with specific cellular

tasks, and large proteins with multiple domains can have several

molecular functions each exerted by a specific domain. The

structure-function relationship encoded in domains has been

used as a tool for understanding the effect of mutations across

functionally related genes. For example, some of the most

frequent oncogenic mutations in human cancer affect analogous

residues of the activation segment of the kinase domain and

cause constitutive activation of several oncogenes, including

FLT3 D835 mutations in acute myeloid leukemia, KIT D816

mutations in gastrointestinal stromal tumors, and BRAF V600

mutations in melanoma (Dibb et al., 2004; Greenman et al.,

2007). Proteome-wide bioinformatics analysis of mutations in

domains has been performed to identify domains enriched for al-

terations (Nehrt et al., 2012; Peterson et al., 2012; Yang et al.,

2015) as well as to detect significantly mutated domain hotspots

using multiple sequence analysis (Peterson et al., 2010; Yue

et al., 2010). We here extend upon these analyses by performing

a systematic pan-cancer analysis of recurrence of mutations in

protein domains (hotspots and enrichment of mutations across

the domain body) and identify dozens of unreported cancer-

associated mutations that are not detected using standard

gene-based approaches.

Here, we performed a systematic and comprehensive anal-

ysis of mutations in protein domains using data from more

than 5,000 tumor-normal pairs from 22 cancer types profiled

by the TCGA consortium and domains from the protein family

database Pfam-A (Punta et al., 2012). Using multiple sequence

analysis, we determined whether conserved residues in pro-

tein domains were affected by mutations across related genes

and identified many putative ‘‘domain hotspots.’’ We further

exposed rare mutations that associated with well-character-

ized oncogenic mutations, including the furin-like domain

where uncharacterized mutations in ERBB4 (S303F) are anal-

ogous to known oncogenic mutations in the same domain of

ERRB2 (S310F), suggesting similar functional consequences.

In several cases, we associated rare mutations in potential

cancer genes with therapeutically actionable hotspots in

known oncogenes, underlining the potential clinical implica-

tions of our findings.

RESULTS

Mapping Somatic Mutations to Protein Domains
To systematically analyze somatic mutations in the context

of conserved protein domains, we retrieved whole-exome
198 Cell Systems 1, 197–209, September 23, 2015 ª2015 Elsevier In
sequencing data from 5,496 tumor-normal pairs of 22 different

tumor types profiled by the TCGA consortium. To obtain a uni-

form dataset of mutation calls, annotation of somatic muta-

tions were based on the publicly available data (October

2014) from the cBioPortal for cancer genomics data (Figure 1)

(Cerami et al., 2012; Gao et al., 2013). After filtering out ultra-

mutated samples and mutations in genes with low mRNA

expression levels (Supplemental Experimental Procedures),

the data consisted of a total of 727,567 mutations in coding

regions with 463,842 missense, 192,518 silent, and 71,207

truncating or small in-frame mutations. Focusing on missense

mutations, we observed that the relative proportion of amino

acids affected by mutations varied considerably between can-

cer types (Figure S1A). These amino acid mutation biases are

due to a combination of variations in the codon usage be-

tween different amino acids and the variations in the base-

pair transitions and transversions observed between different

cancer types (Lawrence et al., 2013; Alexandrov et al.,

2013). Because of the high mutation rate of CG dinucleotides

(cytosine nucleotide occurs next to guanine nucleotide) across

all cancers, arginine (R) is the most frequently altered amino

acid despite being the ninth most common amino acid as

CG dinucleotides are present in four out of six of arginine’s co-

dons (Figure S1B).

We next mapped the mutations to conserved protein domains

obtained from the database of protein domain families, Pfam-A

version 26.0 (Punta et al., 2012) (Figure 1A). Overall, 4,401 of

4,758 unique Pfam domains in the human genomeweremutated

at least once across all samples. The fraction of missense muta-

tions that map to domains (46.7%, or 216,676 of 463,842) was

consistent across samples and tumor types and was similar to

the proportion of the proteome assigned as conserved domains

(45.4%; Figure S1A).

Identification of Domains with Enriched Mutation
Burden
Our first aim was to identify domains that have an increased

mutation burden. We defined the domain mutation burden as

the total number of missense mutations in a domain, excluding

domains only present in only one gene. After tallying mutations

across samples, the domain with the highest mutation burden

was the protein kinase domainwith 7,203mutations in 353 genes

(not including genes with tyrosine kinase domains), while the P53

domain present in TP53, TP63, and TP73 had the most muta-

tions when normalizing for the domain length and the size of

the domain family. To systematically investigate whether themu-

tation burden for a given domain was larger than would be ex-

pected by chance, we performed a permutation test that takes

into account the number of mutations within and outside of the

domain, the domain length, and the length and number of genes

in the domain family. To specifically compare domain versus

non-domain areas, we excluded other domains present in the

domain-containing gene family. Assuming that each mutation

is an independent event and that all residues of the protein

have an equal chance of being mutated, we randomly reas-

signed all mutations 106 times across each gene separately

and calculated whether the observed domain mutation burden

was significantly different from the distribution of burdens

observed by chance (Figure 1B).
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Figure 1. Workflow for Analyzing Recurrently

Mutated Protein Domains in Cancer

(A–C) Missense mutation data from recent genomic

profiling projects of human cancers (TCGA) are

collected, and all mutations are tallied across tumor

samples and cancer types (A). Mutations are mapped

to protein domains obtained from the Pfam-A data-

base, which contains a manually curated set of highly

conserved domain families in the human proteome.

Two separate analyses are performed on these data to

(B) identify domains enriched for missense mutations

and (C) detect mutation hotspots in domains through

multiple sequence alignment. In the first analysis (B),

the observedmutation burden (n1) of a specific domain

(d1) is calculated by counting the total number of

mutations in all domain-containing genes (g1&g2).

Mutations in other domains (e.g., d2) are excluded.

A permutation test is applied to determine whether the

observed mutation burden (n1 = 8) is larger than ex-

pected by chance. Mutations are randomly shuffled

106 times across each gene separately, and the

observed mutation count is compared to the distri-

bution of randomly estimated mutation counts. In the

second analysis (C), domains are aligned across

related genes by multiple sequence alignment and

mutations are tallied at each residue of the alignment.

A binomial test is applied to determine whether the

number of mutations at a specific residue is signifi-

cantly different from the number of mutations

observed at other residues of the alignment.
Using this permutation approach, we identified 14 domains

that were significantly enriched for missense mutations within

the domain boundaries compared to other areas of the same

genes (p < 0.05, Bonferroni corrected; Figure 2; Table 1). As

both the number of gene members per domain (domain family)

and the number of mutations per gene vary greatly, we wanted

to distinguish between two cases: (1) only a single or a few

genes in the domain family contributed to the domain mutation

burden, and (2) genes contributed more evenly to the mutations

in the domain. We were particularly interested in the latter

because mutations in domains contributed by many infrequently

mutated genes may represent new functional alterations that

would not have been discovered using traditional gene-by-

gene approaches. To investigate this, we calculated an entropy

score ðSÞ that was normalized to the size of the domain family, so

a low score indicates that the mutation burden is unevenly

distributed between domain-containing genes, and a high score

indicates that the mutation burden is distributed evenly among

the genes in the domain family (Supplemental Experimental

Procedures).

As expected, we found that the von Hippel-Lindau (VHL) and

the P53 domains were significantly enriched for mutations and

had low entropy scores because they were dominated by muta-

tions in the canonical tumor suppressor genes VHL and TP53,

respectively (Figure 2; Table 1, rows 6 and 9). On the other end

of the spectrum, the KAT11 domain encoding the lysine acetyl-

transferase (KAT) activity of CREBBP and EP300 was signifi-

cantly mutated and had a high normalized entropy score with

around 30 mutations in each gene (Table 1, row 1). CREBBP

and EP300 are transcriptional co-activators that regulate gene

expression through acetylation of lysine residues of histones
Cell
and other transcription factors (Liu et al., 2008). In our analysis,

head and neck squamous cell carcinoma (HNSC) was the tumor

type with most mutations in KAT11, and nearly half fell in the

domain (14 of 29) that spans only about 4% of the length of

both CREBBP and EP300 (Figure S2). One of the two genes

(EP300) has previously been reported as significantly altered in

HNSC (Lawrence et al., 2014). Supporting the enrichment of mu-

tations in the KAT11 domain, inactivating mutations in KAT11

have been associated with oncogenesis in tumor types not

part of this analysis, including B cell lymphoma (Pasqualucci

et al., 2011; Cerchietti et al., 2010; Morin et al., 2011) and

small-cell lung cancer (Peifer et al., 2012). In small-cell lung can-

cer, CREBBP and EP300 were reported to be deleted in a mutu-

ally exclusive fashion (Peifer et al., 2012), which often indicates

that genes are functionally linked (Ciriello et al., 2012).

Confirming canonical mutation events in cancer, we found

mutations clustering in domains of genes involved in receptor

tyrosine kinases (RTKs) signaling, including the tyrosine kinase

domain itself (Pkinase_Tyr), the furin-like domain involved in

RTK aggregation, and downstream signaling through genes

with the ras GTPase domain and the phosphatidylinositol 3-ki-

nase (PI3Ka) domain (Table 1, rows 2, 3, 4, and 12). These do-

mains have also been reported in other systematic studies of

mutations in domains (Yue et al., 2010; Nehrt et al., 2012),

consistent with the fact that the RTK signaling pathways are

often hijacked in cancer (Hanahan and Weinberg, 2011). In a

similar manner, we identified multiple domains in genes that

have previously been associated with cancer, including the

DNA-binding forkhead domain in Fox family transcription factors

and the frizzled domain in G-protein-coupled receptors of the

Wnt signaling pathway. Interestingly, these domains have high
Systems 1, 197–209, September 23, 2015 ª2015 Elsevier Inc. 199



Figure 2. Identification of Protein Domains Enriched for Missense Mutations

The estimated significance level of the domain mutation burden test is plotted against the domain entropy score ðSÞ. The domain mutation burden test captures

the enrichment of mutations within the domain boundaries compared to non-domain areas of the same genes. The entropy score captures the degree to which

individual or multiple genes contribute to the mutations in the domain, where low and high scores indicate that the mutation burden is unevenly or evenly

distributed between domain-containing genes, respectively. S is normalized to the highest possible score so that, when S = 1, all genes are evenly mutated, and

when S = 0, then only one gene is mutated. Domains with a significant mutation burden are indicated above the dashed line (p < 0.05, Bonferroni corrected). The

sizes of the dots reflect the number of mutations in each domain. Domains are color coded by the number of genes in the domain family.
entropy scores with a substantial amount of mutations contrib-

uted by genes not reported as altered in a recent pan-cancer

study (see the italics and underlined formatting in Table 1,

rows 8 and 13) (Lawrence et al., 2014). Thus, from the perspec-

tive of the structure-function relationship encoded in domains,

these are candidate cancer driver genes due to the enrichment

of mutations in these functional regions.

We also identified several domain families in whichmost of the

genes had no apparent link to cancer. Such domains include the

homeobox domain involved in DNA binding and the cadherin

domain involved in cell adhesion (Table 1, rows 5 and 11). As

cell-cell adhesion and DNA binding are critical cellular pro-

cesses, it is plausible that domain-contained genes involved in

these processes are under positive selective pressure in the can-

cer environment, although it remains to be tested whether muta-

tions in these domains are functionally disruptive and may play a

critical role in cancer. Several additional domains were found to

be enriched for mutations and may potentially be of interest in a

cancer context (Table 1).
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Protein Domain Alignment Reveals Mutation Hotspots
across Related Genes
Wenext aligned each domain usingmultiple sequence alignment

and tallied mutations across analogous residues of domain-

containing genes (Figure 1C). The goals of this analysis were to

identify new domain hotspots with recurrent mutations across

functionally related genes and to associate hotspots in well-es-

tablished cancer genes with rare events in genes not previously

linked to cancer. We used a binomial test to determine whether a

mutation peak at a specific residue was significantly different

from other residues in the domain alignment, and we applied

the same entropy analysis to investigate the degree to which

individual or multiple genes contributed mutations to each hot-

spot. Based on Bonferroni-corrected p value (p < 0.05), we iden-

tified 82 significant hotspots in 42 different domains (Table S1)

with the subset of hotspots detected in mutations in at least

two genes presented in Table 2.

To assess the power of the domain-based approach to iden-

tify mutations that would have been missed using a traditional
c.



Table 1. Protein Domains Significantly Enriched for Mutations

Row Domain Genes (#) p-val (�log10) S Mutations (#) ed

Top Genes (gene symbol and #

of mutations)

Top Cancers (cancer and #

of mutations)

1 KAT11 2 2.48 1 65 1.94 CREBBP 33; EP300 32 HNSC 14; BLCA 10

2 Pkinase_Tyr 120 2.48 0.861 2059 1.17 BRAF 427; EGFR 50; ERBB2 43 SKCM 428; THCA 246

3 Ras 124 2.48 0.811 1369 1.08 KRAS 269; NRAS 177; HRAS 46 SKCM 206; COADREAD 166

4 Furin-like 7 2.48 0.753 147 1.77 EGFR 67; ERBB3 30; ERBB2 23 GBM 42; LGG 14

5 Cadherin 614 2.48 0.674 3358 1.06 FAT4 214; FAT3 184; FAT1 116 SKCM 607; LUAD 474

6 P53 3 2.48 0.116 1333 1.63 TP53 1301; TP63 23; TP73 9 OV 182; BRCA 171

7 Prox1 3 2.48 0 56 1.05 PROX1 56; PROX2 0 HNSC 13; SKCM 11

8 Fork_head 42 2.18 0.866 165 1.4 FOXA1 25; FOXA2 10; FOXK2 10 BRCA 22; SKCM 18

9 VHL 2 2.18 0 103 1.24 VHL 103; VHLL 0 KIRC 95; SKCM 2

10 Pentaxin 9 2 0.918 99 1.42 NPTX2 22; SVEP1 17; NPTXR 16 SKCM 23; HNSC 13

11 Homeobox 190 1.87 0.842 375 1.23 ZFHX4 28; NKX3-1 11; ONECUT2 11 SKCM 48; UCEC 44

12 PI3Ka 8 1.63 0.359 356 1.21 PIK3CA 296; PIK3CG 20; PIK3CB 13 BRCA 126; UCEC 44

13 Frizzled 11 1.48 0.979 164 1.21 FZD10 24; FZD9 20; FZD3 19 BRCA 18; LUAD 18

14 Sina 3 1.33 0.851 31 1.43 SIAH2 16; SIAH1 12; SIAH3 3 UCEC 5; COADREAD 4

Domains are listed by their Pfam domain identifiers, the number of genes in the domain family, the Bonferroni-corrected p value, the entropy score ðSÞ,
the number of mutations in the domain, the mutation enrichment score (ed) expressed as the ratio of the observed number of domain mutations to the

expected number of domain mutations, the genes with the most domain mutations, and the two cancers with most domain mutations. Genes are in

italics if they were reported to be significantly mutated in a recent pan-cancer study (Lawrence et al., 2014) and underlined if not. The list is sorted by p

value followed by entropy score.
gene-by-gene approach, we systematically compared the two

approaches using the same dataset and similar binomial statis-

tics. Using the domain-based approach, we identifying an addi-

tional 68 mutations in genes that were not detected when

analyzing genes individually, indicating that the domain-based

analysis complements the gene-based (Figure S3; Table S2).

Although previous studies have usedmultiple sequence analysis

to discover hotspots in domains (Peterson et al., 2010; Yue et al.,

2010), these studies were conducted before the recent wave

of published cancer genomics studies, hindering a direct per-

formance comparison due to extensive differences of data avail-

ability at the time of analysis. A recent report investigated muta-

tions in domains using current cancer genomics datasets (Yang

et al., 2015); however, this analysis did not include multiple

sequence alignment and hotspot detection across domain-

containing genes, making a direct comparison of the methods

infeasible.

We recapitulated several well-known hotspots in domains

where only one gene was mutated such as the P53 and PI3Ka

domains with mutations in TP53 and PIKC3A, respectively (en-

tropy approximately equal to 0; Figure 3; Table 2, rows 13, 14,

and 17). We also confirmed several known domain-specific hot-

spots such as the isocitrate/isopropylmalate dehydrogenase

domain (Iso_dh) with homologous mutations in IDH1 (position

R132) and IDH2 (R172) as well as the ras domain with mutations

inKRAS,NRAS, andHRAS at positionsG12, G13, andQ61 in the

GTP binding region (Table 2, rows 3, 7, 8, and 10). Furthermore,

we found that well-characterized hotspots in KIT D816 in acute

myeloid leukemia (AML), FLT3 D835 in AML, and BRAF V600

in thyroid carcinoma and melanoma aligned perfectly in the

conserved activation segment of the tyrosine kinase domain

(Table 2, row 11). These mutations are known to cause constitu-

tive kinase activity, which promotes cell proliferation indepen-
Cell
dent of normal growth factor control (Hanahan and Weinberg,

2011; Dibb et al., 2004). We further superimposed the crystal

structures of the three proteins and found that the residues over-

lap in structure space (Figure S4), offering support that the

alignment approach captures structurally relevant information.

Notably, in the same domain hotspot many singleton mutations

in lung adenocarcinoma and lung squamous cell carcinoma

mapped to the equivalent position in other RTKs, including

EPHA2 V763M, FGFR1 D647N, PDGFRA D842H, and three mu-

tations in EGFR L861Q. Although these are rare events in lung

cancer, this analysis reveals that they likely affect the same acti-

vation loop residue and may be therapeutically actionable in a

similar manner as the hotspot mutations in KIT, FLT3, andBRAF.

Similar to the previous analysis of entropy in recurrently

mutated domains, we were interested in domain hotspots

with high entropy scores. Again, the lysine acetylase domain,

KAT11, was identified with high entropy for a significant hotspot

at position 94 of the domain alignment with mutations in EP300

at D1399 and CREBBP at D1435 (Table 2, row 1). These sites

are located in the substrate binding loop of KAT11, and muta-

tions in these residues affect the structural conformation of the

substrate binding loop (Liu et al., 2008). Recently, both genes

have been implicated in other cancers not analyzed here such

as small-cell lung cancer (Peifer et al., 2012) and B cell lym-

phoma (Pasqualucci et al., 2011; Cerchietti et al., 2010; Morin

et al., 2011). Confirming the functional relevance of the identified

hotspot, both EP300D1399 andCREBBPD1435mutations have

been found to reduce lysine acetylase activity in vitro (Peifer

et al., 2012; Pasqualucci et al., 2011; Liu et al., 2008). We addi-

tionally identified a potential hotspot in KAT11 at position 105

with mutations in CREBBP (R1446), although this hotspot was

not significant when correcting for multiple hypothesis testing

(p = 2.6e�6, corrected p = 0.59; Figure 4A). CREBBP R1446 is
Systems 1, 197–209, September 23, 2015 ª2015 Elsevier Inc. 201



Table 2. Identified Mutation Hotspots in Protein Domains

Row Domain Genes (#) Position p Value (-log10) S Mut (#)

Top Gene 1

(# mut, gene, site)

Top Gene 2

(# mut, gene, site)

Top Cancer

(# mut, cancer)

1 KAT11 2 94 10 0.88 10 7 EP300 D1399 3 CREBBP D1435 3 BLCA

2 Orn_DAP_Arg_deC 3 86 10 0.28 11 10 AZIN1 S367 1 ODC1 R369 10 LIHC

3 Ras 124 17 10 0.27 56 31 KRAS G13 11 NRAS G13 12 COADREAD

4 MH2 8 46 10 0.25 14 11 SMAD4 R361 3 SMAD3 R268 8 COADREAD

5 Furin-like 7 119 10 0.20 30 27 EGFR A289 2 ERBB3 G284 23 GBM

6 PI3K_C2 7 130 10 0.19 17 15 PIK3CA E453 2 PIK3CB E470 7 BRCA

7 Ras 124 88 10 0.18 189 142 NRAS Q61 22 HRAS Q61 78 SKCM

8 Iso_dh 5 128 10 0.14 292 274 IDH1 R132 18 IDH2 R172 232 LGG

9 WD40 170 16 10 0.13 37 31 FBXW7 R465 2 FBXW7 Y545 12 COADREAD

10 Ras 124 16 10 0.12 224 192 KRAS G12 17 NRAS G12 74 COADREAD

11 Pkinase_Tyr 120 291 10 0.09 415 382 BRAF V600 14 FLT3 D835 235 THCA

12 Recep_L_domain 14 52 10 0.08 17 16 ERBB3 V104 1 ERBB2 I101 5 COADREAD

13 P53 3 181 10 0.07 141 139 TP53 R273 2 TP63 R343 44 LGG

14 PI3Ka 8 27 10 0.02 164 163 PIK3CA E545 1 PIK3CB E552 66 BRCA

15 Furin-like 7 136 7.24 0.22 13 11 ERBB2 S310 2 ERBB4 S303 4 STAD

16 zf-H2C2_2 940 7 7.21 0.62 79 2 ZNF208 R613 2 ZNF286A R430 27 UCEC

17 P53 3 157 5.25 0.14 29 28 TP53 R249 1 TP63 R319 8 LIHC

18 RasGAP 12 23 4.03 0.53 8 3 RASAL1 R342 2 NF1 R1276 2 HNSC

19 BicD 2 570 3.3 0.97 5 3 BICD2 R635 2 BICD1 R633 2 SKCM

20 Pro_isomerase 19 31 3.13 0.48 9 4 PPIAL4G R37 2 PPIG R41 7 SKCM

21 DUF3497 11 3 2.91 0.40 7 4 BAI3 R588 2 ELTD1 K132 4 SKCM

22 MT 15 36 2.79 0.14 8 7 DNAH5 D3236 1 DNAH11 H3139 8 SKCM

23 Choline_transpo 5 186 2.56 0.42 5 3 SLC44A1 R437 2 SLC44A4 R496 1 BRCA

24 bZIP_2 9 21 2.4 0.61 6 2 HLF R243 2 NFIL3 R91 2 UCEC

25 Fork_head 42 88 2.4 0.46 11 3 FOXP1 R514 2 FOXJ1 R170 4 COADREAD

The detected domain hotspots are listed by their Pfam domain identifiers, the number of genes in the domain family, the position of the hotspot in the

domain alignment, the Bonferroni-corrected p values, the entropy score ðSÞ, the number of mutations in the hotspot, the two genes with the most mu-

tations in the hotspot, and the cancer type with most mutations in the hotspot. Genes are in italics if they were reported to be significantly mutated in a

recent pan-cancer study (Lawrence et al., 2014) and underlined if not. The list is sorted by p value followed by entropy score. Hotspots in domains

where only one gene was mutated (S = 0) were excluded. All significant domain hotspots (82) are provided in (Table S1).
also located within the substrate binding loop (Liu et al., 2008),

and R1446mutations have been found in B cell neoplasms (Pas-

qualucci et al., 2011).

Associating Rare Mutations with Known Oncogenic
Hotspots
TheMADhomology 2 (MH2) domain is found inSMAD genes and

mediates interaction between SMAD proteins and their interac-

tion partners through recognition of phosphorylated serine resi-

dues (Wu et al., 2001). We found the known R361H/C hotspot

mutation in SMAD4 (Shi et al., 1997; Ohtaki et al., 2001) aligned

with three R268H/Cmutations inSMAD3 (Figure 4B; Table 2, row

4). In both proteins these residues are located in the conserved

loop/helix region that is directly involved in binding TGFBR1

(Shi et al., 1997). R361Cmutations inactivate the tumor suppres-

sor SMAD4 (Shi et al., 1997), and recently, R268C mutations in

SMAD3 were also found to repress SMAD3-mediated signaling

(Fleming et al., 2013), supporting our association of rare arginine

mutations in SMAD3 with known inactivating mutations in

SMAD4. The majority of the mutations in the hotspot were

from colorectal adenocarcinoma samples (COADREAD), and it
202 Cell Systems 1, 197–209, September 23, 2015 ª2015 Elsevier In
is known that SMAD genes are recurrently mutated in this dis-

ease (Fleming et al., 2013). Interestingly, we found a non-signif-

icant (p = 0.25) tendency toward better survival for patients with

hotspot mutations in colorectal cancer, although more data are

needed to confirm this, to our knowledge, unreported observa-

tion (Figure S5).

We associated several known hotspots in well-characterized

cancer genes with rare but potentially functional mutations in

genes not frequently mutated in cancer. For example, we found

rare mutations in PIK3CB at E470 and at E552 in the PI3K_C2

domain and PI3Ka domain, respectively, that associated with

known recurrent hotspots in PIK3CA (Table 2, rows 6 and 14).

Furthermore, in the cysteine-rich Furin-like domain, which is

involved in receptor aggregation and signaling activation of

ERBB-family RTKs, we identified several significant hotspots,

including rare mutations in ERBB3 (G284R) and ERBB2

(A293V) that aligned with the known activating driver mutations

in EGFR (A289V/T) in glioblastoma (Figure 4C) (Lee et al.,

2006). Recently, one of these mutations, ERBB3 G284R, was

found to promote tumorigenesis in mice (Jaiswal et al., 2013),

suggesting that the singleton ERBB2 A293V mutation found in
c.



Figure 3. Domain Alignment Detects Mutation Hotspots across Related Genes

The estimated significance level of eachmutation hotspot in the domain alignment is plotted against the domain entropy score ðSÞ, which is described elsewhere.

Significant hotspots are indicated above the dashed line (p < 0.05, Bonferroni corrected). The maximal significance was set to 10 (�log10 [p value]). Hotspots are

named by the Pfam identifiers followed by the position in the domain alignment and the number of mutations in the top two mutated genes. The size of the dots

reflects the number of mutations at each residue, and the dots are color coded by the number of domain-containing genes in the genome.
a melanoma sample could represent an infrequent oncogenic

event. We also identified a hotspot at position 137 of the align-

ment with rare S303F mutations in ERBB4 aligning with S310F/

Y mutations in ERBB2. Interestingly, in a functional analysis of

ERBB2 mutations in lung cancer cell lines, S310F/Y mutations

were found to increase ERBB2 signaling activity, promote

tumorigenesis, and enhance sensitivity to ERBB2 inhibitors

in vitro (Greulich et al., 2012). Future work will show whether

analogousmutations in ERBB4 (S303F) may have similar effects.

Identification of New Hotspots in Protein Domains
We also identified several additional hotspots in domains

with mutations in genes not previously associated with cancer.

We detected a hotspot in the peptidyl-prolyl isomerase

domain (Pro_isomerase) with nine mutations distributed among

PPIAL4G (R37C), PPIG (R41C), PPIA (R37C), PPIE (R173C),

andPPIL2 (I308F) (Figure 5A). The Pro_isomerase domain, which

is distinct from the rotamase domain of PIN1, is present in genes
Cell
that catalyze cis-trans isomerization of proline imidic peptide

bonds and have been implicated in folding, transport, and as-

sembly of proteins (Göthel and Marahiel, 1999). Seven of the

nine mutations found in this hotspot were from melanoma sam-

ples, and interestingly, we found that in melanoma these muta-

tions correlate with significant upregulation of about a dozen

genes, including the cancer-testis antigens CTAG2, CTAG1B,

CSAG2, and CSAG3 (Figure S6).

The forkhead domain mediates DNA binding of forkhead

box (Fox) transcription factors and encodes a conserved

‘‘winged helix’’ structure comprising three a helices and three

b sheets flanked by one or two ‘‘wing’’-like loops (Carlsson and

Mahlapuu, 2002). In the forkhead domain, we identified a hotspot

with 11 mutations distributed among FOXP1 (R514C/H), FOXK2

(R307C/H), FOXK1 (R354W), FOXJ1 (R170G/L), and FOXP4

(R516C) in several different cancer types (Figure 5B). The identi-

fied hotspot was located in the third a helix (H3), which exhibits

a high degree of sequence homology across Fox proteins and
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Figure 4. Multiple Sequence Alignment of Domains Identifies Mutation Hotspots and Associates Rare Mutations with Known Oncogenic

Hotspots

(A) The amino acid sequence alignment of the KAT11 histone acetylate domain in CREBBP (positions 1342–1648) and EP300 (positions 1306–1612) is repre-

sented as a block of two by 308 rectangles. Using the resulting alignment coordinates, missense mutations are tallied across the domains of the two genes. Both

amino acids of the alignment (block) and the resulting amino acids due to mutations (histogram) are color coded by their biochemical properties. Alignment gaps

are indicated by gray rectangles. Significant hotspots are indicated with position in alignment (pos), p value (pval), Bonferroni-corrected p value (p-cor), and

number of mutations in top mutated genes and cancer types.

(B and C) Similar plots are shown for the MAD homology 2 (MH2) domain involved in SMAD protein-protein interactions (B) and the furin-like domain involved in

RTK aggregation and signal activation (C).
binds to the major groove of DNA targets. Specifically, the argi-

nine residue that we found mutated forms direct hydrogen

bonding with DNA in both FOXP and FOXK family transcription

factors (Figures 5C and 5D) (Wu et al., 2006; Stroud et al.,

2006; Chu et al., 2011; Tsai et al., 2006). Furthermore, experi-

mental R307A substitution in FOXK2 abolishes DNA binding

(Tsai et al., 2006), suggesting that the identified arginine muta-

tions may play an important role in cancer by inhibiting DNA

binding of FOXP, FOXK, and related Fox transcription factors,

although the hypothesis that the identified forkhead domain hot-

spot is an inactivating mutational event remains speculative.

We identified several other domain hotspots of potential inter-

est such as a hotspot in the rasGAP GTPase activating domain
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with mutations in the tumor suppressors NF1, RASA1, and

RASAL1; a hotspot in the kelch motif (Kelch 1 domain) with mu-

tations in KEAP1 and KLHL4; as well as a hotspot in a domain of

unknown function, DUF3497 (Figure S7). The potential biological

consequence of thesemutations remains to be elucidated.Many

additional domain hotspots were identified, and we make all

analysis of hotspots in protein domains available via an interac-

tive web service at http://www.mutationaligner.org.

DISCUSSION

Wehave extended the principle of recurrence analysis for protein

mutations observed in surgical cancer specimens. Instead of
c.
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Figure 5. Identification of New Hotspots Affecting Conserved Residues of Protein Domains

(A and B) Missense mutations are tallied across multiple sequence alignments of genes containing the peptidyl-prolyl isomerase (Pro_isomerase) domain (A) and

the forkhead domain (B).

(C) Secondary structure of the forkhead domain consisting of four a helices (H1–H4), three b sheets (S1–S3), and one wing-like loop (W1). Sequences are shown

for selected Fox transcription factors that had mutations in the identified hotspot in H3. Of note, the selected genes have a fourth a helix rather than the canonical

second wing-like loop found in other Fox genes.

(D) Ribbon drawing of the crystal structure of two FOXK2 forkhead domains binding to a 16-bp DNA duplex containing a promoter sequence (PDB: 2C6Y) (Tsai

et al., 2006). The R307 residue that we identified as mutated is shown with spheres.
only summing the occurrence of mutations over all tumor sam-

ples, we also sum over all homologous sisters of a protein

domain. This increases the power of inferring likely functional

mutations in several ways by enabling or providing: (1) higher

statistical power to detect mutation hotspots (Figure S3; Table

S2); (2) functional characterization of rare mutations that are in

homologous positions relative to mutations with known func-

tions (Figure 4; Table 2); (3) mechanistic clues or pathway linkage

about the downstream effects of oncogenic mutations (Figure 4);

(4) prediction of new therapeutically actionable alterations by ho-

mologous relationship to known drug targets (Figures 4C and
Cell
S4); (5) identification of subpathways from selective alteration

in a subset of upstream domains (Figure 4B); and (6) identifica-

tion of novel domains with plausible oncogenic function based

on aggregation of sub-threshold mutation counts (Figures 5

and S7). The impact of these methodological improvements on

linking genotype and phenotype in cancer, as well as technical

limitations, will be discussed below.

By extending the notion of recurrence of mutations from single

genes to gene families, one immediately gains statistical power

for interpreting recurrence (above random) of mutations across

many cancer samples as evidence for a functional contribution
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to oncogenesis or tumor maintenance. This is especially useful

for mutations, which are infrequently observed in a particular

domain in the family, but for which there are analogous alter-

ations in sister domains in the domain family. For example, we

identified a hotspot in the forkhead domain, where the crucial

DNA-contacting arginine residue in the third helix of the fork-

head-encoded winged-helix structure was mutated in several

FOXP and FOXK family transcription factors. We speculate

that this mutation in the DNA-binding part of the forkhead

domain is a novel inactivating oncogenic event. This example

illustrates the power of connecting the observation of mutations

across common members of a domain family, enabling us to

identify entirely new hotspots in domains withmutations in genes

not previously associated with cancer.

Beyond the assertion of likely functional impact in cancer

based on aggregate occurrence, we assigned specific functional

consequences to some of the infrequent mutations in cases

where the analogous residues in other family members have

well-characterized functional roles. Because many protein do-

mains have been functionally characterized, one of the strengths

of our approach is that such knowledge can provide mechanistic

insight into the potential effect of alterations. For example, we

associated mutations in infrequently altered genes with muta-

tions in paralogous genes that have previously been implicated

in cancer (see, e.g., the identified hotspots in MH2, Furin-like,

and PI3K_C2 domains). Thus, transfer of knowledge from well-

studied oncogenes to less-studied homologs (‘‘guilt by associa-

tion’’) can lead to testable hypotheses about the effect of rare

alterations and hereby facilitate the functional interpretation of

mutations in large cancer genomics datasets.

This analysis may also shed light on how oncogenic alterations

in homologous domains are related in signaling pathways. While

the effect of an oncogenic mutation on the function of an individ-

ual protein, such as signaling-independent enzymatic activity,

may be known or can be ascertained experimentally, the down-

stream consequences are enmeshed in the full complexity of cell

biological signaling pathways. Fortunately, the evolutionary rela-

tionships within a domain family plus the recurrence of specific

residue alterations in the oncogenic selection process may

provide clues as to similarity of mechanism and similarity of

downstream consequences on cell physiology. For example, a

furin-like domain is present in the extracellular region of both

the ERBB2 and ERBB4 receptor tyrosine kinases. Our analysis

clearly relates the known and fairly frequent oncogenic S310F/

Y in ERRB2 mutations with two uncharacterized mutations

S303F in ERBB4. Both sets of mutations plausibly execute

similar biophysical mechanisms, in which the replacement

of a small amino acid with an O-H side chain (S) with a large hy-

drophobic amino acid (F or Y) in a conserved region modifies

receptor multimerization and activates downstream mitogenic

signaling (Greulich et al., 2012). This example, and others in

the current dataset, is suggestive of the general principle that

recurrent mutations in analogous positions in evolutionarily

related protein domains share aspects of molecular mechanism

as well as downstream cell biological effects.

That mutations in domains of related genes may have similar

mechanistic consequence or effects on downstream signaling

may also have therapeutic implications. In some cases plausibly

actionable alterations can be identified through a homologous
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relationship to alterations in known drug targets. As the S310F/Y

mutations in ERBB2 sensitize cancer cell lines to the RTK inhibi-

tors neratinib, afatinib, and lapatinib (Greulich et al., 2012), the

same may be true for the analogous S310F/Y mutations in

ERBB4. Furthermore, using sequence and 3D structure analysis

of the tyrosine kinase domain, we also find that the canonical hot-

spotsofBRAF (V600E),FLT3D835Y,andKITD816Vsuperimpose

in the activation loop of the kinase domain controlling the enzy-

matic activity state (Figure S4). Notably, we found four EGFR

L861Q/Rmutations in lung cancer affecting an analogous residue

in the activation loop. Based on the conserved structure-function

relationship of the tyrosine kinase domain, these rare EGFR

L861Q/R mutations may also represent activating events and

could therefore be therapeutically actionable in analogy to the

targetable BRAF V600E mutations. Encouragingly, non-small-

cell lung cancer patientswithEGFR L861mutations have recently

shown positive clinical response when treated with EGFR-tar-

geted therapy (Wu et al., 2011). In the spirit of personalized ther-

apy and basket clinical trials (Garraway and Lander, 2013), this

type of convergence of downstream consequences of analogous

mutations may suggest specific therapeutic choices for an addi-

tional set of observed cancer-associated mutations.

The mutational patterns across a set of sequence-similar do-

mains may also be useful in elucidating fine-grained detail of

pathway signaling, such as a useful distinction between subpath-

ways. For example, in the current dataset, out of the eight mem-

bers of the MH2 domain-containing SMAD family, only SMAD3

and SMAD4 are mutated at analogous positions involved in

TGFBR1 binding. Although there is inherent uncertainty in any

finite dataset, this observation raises the hypothesis that sig-

naling events of SMAD3 and SMAD4 in cancer—or perhaps in

general—are more closely related than those involving other

MH2 domain-containing proteins. In general, on the basis of

mutational patterns in a large gene family, one may be able to

uncover functional similarity between members of a family and

thereby predict which subset of genes are involved in similar pro-

cesses or particular signaling subpathways.

These examples illustrate the principle of using domains for

linking genotype and phenotype and for inferring the biological

relevance of rare mutations in homologous genes. This process

of informational aggregation may also lead to the discovery of

the functional roles of domains not previously associated with

oncogenesis, particularly in cases where the frequency of muta-

tions in each of the domains separately is below the recurrence

threshold but rises above the threshold when the multiple

domain instances are equivalenced. For example, DUF3497,

which is found in members of the G-protein-coupled receptor

2 family, has not been previously described as being involved

in cancer processes, but mutations in lung cancer and mela-

noma samples significantly cluster in a hotspot in this domain

with a total of seven mutations observed in BAI3 (R588P/Q),

ELTD1 (K132E/N), and CELSR1 (T2124A) (Figure S7C). This hot-

spot, with recurrent mutations in mostly basic amino acids (six

out of seven mutations in K and R), is tantalizing because it sug-

gests that mutations in this ‘‘domain of unknown function’’

confer a selective, functional advantage to cancer cells.

We here analyze mutations across domains in a set of related

genes with the aim of identifying recurrent mutations with

functional relevance (positive hotspots). However, if passenger
c.



mutations without functional relevance are aggregated across

several genes, an approach based on homologous domains

may incur the risk of detecting false positive hotspots compared

to a gene-based approach. The detection of spurious domain

hotspots could be exacerbated by mutation biases that alter

amino acids disproportionately. For example, arginine is the

most frequently altered amino acid in the majority of tumor types

(Figure S1) as it has four codons containing CG dinucleotides,

which are frequently subject to C/T transitions due to deamina-

tion of methylated cytosine to thymine. In several domains, such

as the tetramerization (K_tetra) domain of potassium channel

proteins (Table S1) and the zf-H2C2 2 domain of zinc finger pro-

teins (Table 2, row 16), we identified significant hotspots where

argininemutations align across a large set of genes in the domain

family. Although the frequency of such hotspots may be driven

by the arginine mutation bias, the mutations themselves may

nevertheless be functional.

Future work will aim to refine the analysis of mutations in do-

mains and expand the scope of our analysis to other functional

elements in genes. Our focus here was on somatic missense mu-

tations, but this requirement may be relaxed to include germ-line

mutations or other somatic alterations (e.g., truncating mutations

and small in-frame insertions and deletions). Importantly, trun-

cating mutations affecting a particular domain may not neces-

sarily actually be located in the domain but upstream of it, so

we excluded truncating mutations from this work. An additional

extension of our work would be to implement a sliding window

for peak detection of clusters of mutations in domain alignments.

However, our own observations suggest that mutation hotspots

are largely limited to single residues. Other types of regulatory

protein motifs can be analyzed, including short linear motifs

that guide protein phosphorylation by kinases, which have previ-

ously been shown to be enriched for cancer-associated muta-

tions in some genes (Reimand and Bader, 2013; Reimand et al.,

2013). Finally, assessment of the functional impact of mutations

using structural information and evolutionary sequence conser-

vation, for example, as applied in our mutation assessor method

(Reva et al., 2011), and evolutionary residue-residue couplings

derived from correlated mutations in protein family alignments

(Marks et al., 2011, 2012) can be incorporated to provide addi-

tional insight into the potential role of mutations in cancer.

As more data become available, integrative approaches com-

bining functional evidence acrossmultiple scales such as genes,

domains, and signaling pathways will be needed to improve

the computational pipelines for variant function prediction. To

make the results of our analysis directly useful to the community

at large, we have made all findings available through an inter-

active web service (http://www.mutationaligner.org), which is

connected to our cBioPortal database for cancer genomics

data (http://www.cbioportal.org) through bidirectional links.

The MutationAligner web resource will be periodically updated

as mutation data on genomically profiled tumor samples be-

comes available in the public domain.
EXPERIMENTAL PROCEDURES

Data Collection and Analysis

Detailed description of methods can be found in the Supplemental Experi-

mental Procedures. Briefly, around 460,000 missense mutations from 5,496
Cell
exome-sequenced tumor-normal pairs of 22 different tumor types studied

by the TGCA consortium were obtained from the cBioPortal (Cerami et al.,

2012; Gao et al., 2013) in the format of TCGA level 3 variant data.Missensemu-

tations were mapped to protein sequences and protein domains annotated by

Pfam-A version 26 (Punta et al., 2012). Pfam-A domains were excluded from

the analysis if (1) no missense mutations were present, (2) the Pfam-A expec-

tancy score (e-value) was greater than 1e�5, or (3) the domain was only present

as one instance in the human genome. To assess whether themutation burden

of the domain was larger than would be expected by chance, we (1) imple-

mented a permutation test, which compared the observed mutation burden

of the domain to the distribution of burdens generated by randomly distributing

mutations across genes containing the domain; and (2) calculated a domain

mutation enrichment score (Equation 1, Supplemental Experimental Proce-

dures). To identify putative hotspots for mutations within domains, we used

multiple sequence alignment of domain regions across protein families using

BLOSUM80 as a scoring matrix. Mutations were tallied across samples and

across domain-containing genes using the coordinates of the multiple seq-

uence alignment. We used a binomial test, taking into account the length

and total number of mutations observed in the domain, to generate a p value

by comparing the number of mutations observed at that domain position to

what would be observed by chance assuming a random distribution of muta-

tions (Equations 2 and 3, Supplemental Experimental Procedures). We calcu-

lated an entropy score ðSÞ based on Shannon information entropy to estimate

how uniformly mutations are spread across domain-containing genes, where a

high score indicates that multiple genes contribute to the observed mutations

in the domain. The entropy score was normalized ðSÞ to the domain family size,

with a maximum score of 1, signifying that mutation counts are the same for all

genes (Equations 4 and 5, Supplemental Experimental Procedures). In total,

17,273 positions in the domain sequence alignments were analyzed based

on the following criteria: (1) at least two mutations occurred at each position

and (2) at least three-quarters of the domain alignments were non-gaps at

each position (residues with alignment gaps in more than 75% of the se-

quences were excluded from the domain hotspot analysis). All p values were

adjusted for multiple hypothesis testing using the stringent Bonferroni correc-

tion method.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cels.2015.08.014.
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