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Extended Experimental Procedures

Mutation data and data preprocessing

We used the TCGA level 3 variant data (MAF file format) in the cBioPortal2,3 which were retrieved
from the Broad Institutes “Firehose” pipeline for processing of raw TCGA data. Thus, we used high
level (processed) data for this study and relied on the variant and protein isoform calls from the
Broad Firehose. To filter out mutations in low expressed genes, which has been shown to be asso-
ciated with mutation biases5, mRNA sequencing data in the form of normalized RSEM values were
obtained from the same data portal. Within each tumor type, we determined the mean RSEM value
for each gene and mutations in genes with a mean RSEM value of less than 10 were excluded
from the analysis. Samples with extreme genomic instability, or so-called ultra-mutated samples,
are generally thought to have many non-functional passenger mutations and could therefore bias
mutation hotspot analysis, for example in cases where passenger mutations are tallied across
genes in a domain family. Thus, we filtered out ultra-mutated samples by disregarding samples
with more than 2,000 non-silent mutations. The TCGA tumor types analyzed were: Acute myeloid
leukemia (LAML), Adrenocortical carcinoma (ACC), Bladder urothelial carcinoma (BLCA), Brain
lower grade glioma (LGG), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), Colorectal adenocarcinoma (COADREAD), Glioblas-
toma multiforme (GBM), Head and neck squamous cell carcinoma (HNSC), Kidney chromophobe
(KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP),
Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carci-
noma (LUSC), Ovarian serous cystadenocarcinoma (OV), Prostate adenocarcinoma (PRAD), Skin
cutaneous melanoma (SKCM), Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA),
Uterine carcinosarcoma (UCS), Uterine corpus endometrial carcinoma (UCEC).

Pfam domains and mapping mutations to protein domains

The Pfam-A data base of domains in the human proteome (version 26) as well as all human pro-
tein sequences were downloaded from the Pfam ftp server (pfam26.9606.tsv, ftp://ftp.ebi.
ac.uk/pub/databases/Pfam). To include only high confidence domain calls, domains with an ex-
pectancy value (e-value) larger than 1e−5 were excluded. Mapping entries between MAF files
and Pfam domains was performed using Uniprot accession numbers using the MAF ONCOTA-
TOR.UNIPROT.ACCESSION.BEST.EFFECT field. In cases where the MAF entries did not have
Uniprot accession numbers, the biomart webservice (http://www.ensembl.org/biomart/) was
used to map between HGNC gene symbols and Uniprot accession numbers. The protein domain
coordinates from the Pfam-A database were then matched to the MAF entries to determine if the
mutations fell within or outside the boundaries of the protein domains using the MAF ONCOTA-
TOR.PROTEIN.CHANGE.BEST.EFFECT field. MAF entries for which the mutated protein position
and amino acid identity did not match with the corresponding amino acid identity in the protein se-
quences were excluded from the analysis. Furthermore, we excluded MAF entries where the
mutated protein position was larger than length of the protein sequence.

Identification of domains with enriched mutation burden

For each domain we tallied the number of missense mutations falling (1) within the domain bound-
ary, and compared it to (2) outside of the boundaries of all other domains in the gene, effectively
excluding other domains than the domain in question. To assess if the mutation burden of the
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domain was larger than would be expected by chance, we implemented a permutation test. The
permutation test compared the observed mutation burden of the domain to the distribution of
burdens generated by randomly distributing mutations across genes containing the domain. To
generate this distribution, we repeated the following process for each permutation i:

1. For each gene g in the domain family, count the total number of observed mutations in the
gene (both within and outside of the domain). Define this quantity to be ng.

2. For each gene g, randomly redistribute ng mutations across the gene, allowing for multiple
mutations to fall at the same amino acid residue.

3. Count the total number of mutations which fall within the domain boundaries across all genes.
Define this quantity to be mi, the mutation burden of the domain in permutation i.

To calculate a p-value for the observed mutation burden of the domain, we compared the true
mutation burden md derived from the data to the distribution of mi. The p-value was defined to
be the proportion of permutations with mutation burden greater than or equal to the observed
mutation burden.

Note that by treating each gene separately and summing over the outcome of randomly distributed
mutations in each gene, we are able to account for gene-to-gene variation in mutation rate (e.g.
variation associated with replication timing5 as well as differences in gene length and the
proportion of each gene occupied by domains).

Domains with less than 25 mutations across all cancer types were excluded in the permutation
analysis to avoid spurious results due to low mutation counts. Furthermore, to ensure proper
random redistribution of mutations across genes and their domains, we omitted domains where
the fraction of amino acids assigned as domains was larger than 75% of the all amino acids in the
domain-containing proteins.

Domain mutation enrichment score

To calculate an enrichment score of mutations in the domain (ed), we compared the observed
domain mutation burden (md) to the expected domain mutation burden (me). We calculated me

based on the total number of mutations observed (ng) and the fraction of amino acids assigned as
domains compared to total length of all genes in the domain family (fd):

ed =
md

me
,me = ng × fd (1)

Multiple sequence alignment of protein domains

The domain amino acid sequences were obtained as sub-strings from the protein sequences
and aligned across domain-containing genes using the MathWorks multialign package with BLO-
SUM80 as scoring matrix and default parameters. For aligning domains present in only two genes,
the Needleman-Wunsch algorithm was by applied using the MathWorks nwalign package with de-
fault parameters. After alignment of domains, missense mutations were tallied across analogous
residues of domain-containing genes using the coordinates of the multiple sequence alignment.
Residues with alignment gaps in more than 75% of the sequences were excluded from the domain
hotspot analysis.
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Identification of mutation hotspots within domain alignments

To identify putative hotspots for mutations within domains, we used as a null model the case of
mutations falling with equal likelihood at all sites within a domain. Following multiple sequence
alignment of all genes within a domain family, we tallied the number of observed mutations within
the domain. We assumed that, for a particular residue to be called a putative hotspot, more
mutations must fall on that residue than would be expected by chance if mutations were randomly
distributed throughout the body of the domain. Assuming that each mutation falls at a random site
along the domain body, the frequency of mutations at any particular residue follows a binomial
distribution:

P (m = k) =

(
n

k

)
pk(1 − p)n−k (2)

where n is the total number of mutations in the domain, k is the number of mutations falling at a
particular residue, and p is the probability of any individual mutation falling at a particular residue,
and P (m = k) is precisely the probability of observing k mutations at a single residue, assuming
that n mutations were observed across the entire domain. Because our null model assumes an
equal likelihood of mutations at any residue, p = 1

L , where L is the length of the domain.
Thus, to assign a probability to the observation of k mutations falling at a particular site by change
(i.e. a p-value), we calculate the probability of at least k mutations falling at a particular site from
our null model

P (m ≥ k) =
n∑

i=k

(
n

k

)
pk(1 − p)n−k (3)

To correct for multiple hypothesis testing, p-values for all considered hotspots (aligned domain
residues with more than two mutations) were adjusted using the Bonferroni correction method.

Entropy calculations

To assess how uniformly the mutations in a specific domain are spread across the genes contain-
ing such domain, we rely on the notion of Shannons information entropy. The information entropy
S of a discrete probability distribution P (x) is defined to be

S = −
n∑

i=1

P (xi) lnP (xi) (4)

where P (xi) is the probability of the ith value of x. The entropy is maximal when P (x) is uniform,
i.e. each value of x is equally probable (Smax = lnn), and minimal when P (x) is equal to 1 for a
single value of x (Smin = 0). In order to facilitate the comparison of entropy values for vectors of
different dimension (e.g. domain families with different numbers of constituent genes), we use a
normalized entropy measure S̄ defined as

S̄ =
−
∑n

i=1 P (xi) lnP (xi)

lnn
(5)

where n is the dimension of the vector x.
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Supplementary Figures
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Figure S1: Related to Figure 1. Mutation frequencies across cancer types and the relative proportion of mu-
tated amino acid types. (A) Within each cancer type the individual samples are ordered by the number of missense
mutations in the proteome, and the median number of mutations is indicated (grey line). The color code represents
the fraction of mutations that map to protein domains, and the arrow indicates the proportion of the proteome assigned
as domains (0.454). The lower panel shows the relative proportion of amino acids altered by missense mutations in
coding regions in each same (mutated from). The average proportions are displayed on the right where the first bar is
the background frequency of amino acids in the proteome, the second bar is the average of all samples (mutated from),
and the third bar is the resulting amino acid change (mutated to). Samples with more than 2000 missense mutations
were excluded from the analysis. (B) The frequency of amino acids in the human proteome (blue) is compared to the
frequency of amino acid before mutation (green) and after mutation (dark red) in the mutated position. Note that some
amino acid types are disproportionally altered due to mutation biases in specific cancers1,5, such as C→G transver-
sions in bladder cancer (BLCA) that disproportionally alter the acidic amino acids aspartic acid (D) and glutamic acid
(E), while C→T transitions in melanoma (SKCM) preferentially affect glycine (G) and proline (P). Moreover, arginine (R)
is the most mutated amino acid across cancer types due to prevalent C→T transition at CP dinucleotides, which are
present in four of six of arginine’s codons.
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Figure S2: Related to Figure 2. Mutations in the KAT11 domain of CREBBP and EP300 in head and neck
squamous cell carcinoma (HNSC). Mutation counts across the gene span of CREBBP (A) and EP300 (B) in HNSC
samples. Note that the mutations tend to cluster to the lysine acetylase domain KAT11 in both genes. “Oncoprints” of
mutations in individual HNSC samples in the KAT11 domain of CREBBP and EP300 (C) and in the full length of the
two genes (D) are provided to visualize the mutations in the context of each sample.
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Figure S3: Related to Figure 3. Systematic analysis of mutation hotspots identified through a domain-centric
and a gene-centric approach. The estimated significance level (Bonferroni corrected) of the identified domain mutation
hotspots is plotted against the significance level of hotspots identified through a gene-based approach using similar
binomial statistics. Hotspots are named by the gene followed by the mutated site and the domain name. The size of
the dots reflects the number of mutations at each site and the dots are color coded by the number of domain-containing
genes in the genome. Note that the two approaches are complementary: there are numerous mutations in genes
that would not have been significantly associated with hotspots without taking domain sequence similarity into account
(68 cases, lower right corner, see Table S2 for details), and vice versa, there are multiple mutation sites that are not
captured by the domain-based approach but only the gene-based approach (upper left corner), particularly for large
domain families with high mutation loads which diminishes statistical power for domain hotspot detection.
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Figure S4: Related to Table 2. Structural alignment of tyrosine kinases superimposes conserved hotspot
residues. (A) The structures of cKIT and BRAF kinase domains are aligned (BRAF PDB ID: 4MNF, cKIT PDB ID:
1PKG). The activation loop is in the active conformation in both structures and the activation loop hotspot residues
superpose the hotspots. Note that the mutated (V600E) form of the BRAF structure is shown while the cKIT and FLT3
structure are shown wildtype form. (B) The structures of cKIT and FLT3 kinase domains are aligned (FLT3 PDB ID:
1RJB). The activation loop is in an autoinhibited state for both proteins and the hotspot residues superpose perfectly.
In each case, we aligned the protein structures to minimize the global root mean square deviation (RMSD) between the
two structures and no bias was introduced to superpose the hotspot residues. The structural alignment and analysis
was performed with the MatchMaker algorithm implemented in UCSF chimera6.
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Figure S5: Related to Figure 4B. Hotspot mutations in the MH2 domain of SMAD genes in colorectal adenocar-
cinoma. (A) Kaplan-meier survival curves of colorectal adenocarcinoma patients with (red) and without (blue) MH2
domain hotspot mutations. Note that in addition to the major hotspot identified at position 46 of the domain alignment,
positions 39, 40, and 57 were also considered hotspots in colorectal cancer for this analysis (SMAD1: MUT = R319;
SMAD2: MUT = R321 MUT = R321 MUT = D304 MUT = P305; SMAD3: MUT = R268 MUT = D262; SMAD4: MUT =
R361 MUT = D355 MUT = P356) (B) Similar analysis for mutations found in MH2 domain containing genes (SMAD1-9)
except MH2 domain hotspot mutations (“non-hotspot mutations”) compared to all other samples. All data were obtained
from the cBioPortal for cancer genomics data2,3.
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Figure S6: Related to Figure 5A. Upregulation of genes in melanoma with prolyl isomerase hotspot mutations.
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Hochberg method). Seven out of 257 melanoma samples had hotspot mutations with mutations in PPIAL4G (four
R37C mutations), PPIG (two R41C mutations), and PPIA (one R37C mutation). Highlighted genes (red) are more
than 4-fold differentially regulated at the level of FDR < 0.05. Inset shows a similar analysis except mutant samples
were considered as all samples with missense mutations in genes containing the domain (excluding samples with
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116 Kelch_1 domains
 in 43 genes

Figure S7: Related to Table 2. Identification of putative hotspots in RasGAP, Kelch 1, and DUF3497. (A) The
sequence alignment of the RasGAP domain is represented as a block of rectangles where the aligned amino acids
are color coded by their biochemical properties. Alignment gaps are indicated by gray rectangles. Using the resulting
alignment coordinates, missense mutations are tallied across domain-containing genes and color coded according to
the generated amino acid types. A significant hotspot is indicated at alignment position 23 with associated p-value
and number of mutations in top mutated genes and cancer types. In this hotspot, the mutated genes are RASAL1
(R342G/H/P), RASA1 (R789L/Q), NF1 (R1276Q), and RASA2 (R397K). (B) Similar plot but for the Kelch 1 domain.
Of note, some genes contain several repeats of the the Kelch motif. (C) Similar plot but for the DUF3497 domain
(Domain of Unknown Function). Closer inspection of mutations and genes in the domains can be found a http:

//mutationaligner.org/. 11

http://mutationaligner.org/
http://mutationaligner.org/


Supplementary Tables

Table S1: Related to Table 2. Significant mutation hotspots identified in protein domains. The detected domain
hotspots are listed by their Pfam domain identifiers, the number of genes in the domain family, the position of the
hotspot in the domain alignment, the Bonferroni-corrected p-values, the entropy score (S̄), the number of mutations in
the hotspot, the genes with the most mutations in the hotspot, and the cancer type with most mutations in the hotspot.
The genes written in italic font if they were reported to be significantly mutated or bold font if they were not in a recent
pan-cancer study4. The list is sorted by p-value followed by entropy score.

Domain Genes Position pValue S̄ Mut Top Gene 1 Top Gene 2 Top Cancer
(#) (-log10) (#) (# mut, gene, site) (# mut, gene, site) (# mut, cancer)

KAT11 2 94 10 0.88 10 7 EP300 D1399 3 CREBBP D1435 3 BLCA
Orn DAP Arg deC 3 86 10 0.28 11 10 AZIN1 S367 1 ODC1 R369 10 LIHC
Ras 124 17 10 0.27 56 31 KRAS G13 11 NRAS G13 12 COADREAD
MH2 8 46 10 0.25 14 11 SMAD4 R361 3 SMAD3 R268 8 COADREAD
Furin-like 7 119 10 0.20 30 27 EGFR A289 2 ERBB3 G284 23 GBM
PI3K C2 7 130 10 0.19 17 15 PIK3CA E453 2 PIK3CB E470 7 BRCA
Ras 124 88 10 0.18 189 142 NRAS Q61 22 HRAS Q61 78 SKCM
Iso dh 5 128 10 0.14 292 274 IDH1 R132 18 IDH2 R172 232 LGG
WD40 170 16 10 0.13 37 31 FBXW7 R465 2 FBXW7 Y545 12 COADREAD
Ras 124 16 10 0.12 224 192 KRAS G12 17 NRAS G12 74 COADREAD
Pkinase Tyr 120 291 10 0.09 415 382 BRAF V600 14 FLT3 D835 235 THCA
Recep L domain 14 52 10 0.08 17 16 ERBB3 V104 1 ERBB2 I101 5 COADREAD
P53 3 181 10 0.07 141 139 TP53 R273 2 TP63 R343 44 LGG
PI3Ka 8 27 10 0.02 164 163 PIK3CA E545 1 PIK3CB E552 66 BRCA
P53 3 156 10 0 99 99 TP53 R248 14 OV
PI3Ka 8 24 10 0 93 93 PIK3CA E542 43 BRCA
P53 3 81 10 0 77 77 TP53 R175 18 BRCA
P53 3 128 10 0 41 41 TP53 Y220 8 BRCA
P53 3 85 10 0 39 39 TP53 H179 7 HNSC
P53 3 101 10 0 39 39 TP53 H193 9 BRCA
P53 3 153 10 0 36 36 TP53 G245 9 OV
PI3Ka 8 28 10 0 30 30 PIK3CA Q546 11 BRCA
PGM PMM I 4 88 10 0 19 19 PGM5 I98 17 STAD
Iso dh 5 96 10 0 18 18 IDH2 R140 17 LAML
PI3K p85B 3 58 10 0 18 18 PIK3CA R88 9 UCEC
P53 tetramer 3 20 10 0 14 14 TP53 R337 2 HNSC
MATH 8 107 10 0 13 13 SPOP F133 13 PRAD
DUF663 2 67 10 0 12 12 BMS1 E878 10 KIRP
CHGN 8 398 8.83 0 11 11 CSGALNACT2 L362 5 KIRP
P53 3 190 8.75 0 34 34 TP53 R282 7 HNSC
MANEC 3 9 7.54 0 7 7 LRP11 P92 7 ACC
Furin-like 7 136 7.24 0.22 13 11 ERBB2 S310 2 ERBB4 S303 4 STAD
zf-H2C2 2 940 7 7.21 0.62 79 2 ZNF208 R613 2 ZNF286A R430 27 UCEC
Apolipoprotein 5 52 6.69 0 6 6 APOE C130 6 ACC
Androgen recep 2 276 6.59 0 9 9 AR Q58 2 ACC
PI3K C2 7 94 5.29 0 10 10 PIK3CA C420 4 UCEC
P53 3 157 5.25 0.14 29 28 TP53 R249 1 TP63 R319 8 LIHC
P53 3 82 4.6 0 28 28 TP53 C176 6 OV
RasGAP 12 23 4.03 0.53 8 3 RASAL1 R342 2 NF1 R1276 2 HNSC
ELFV dehydrog 2 206 3.36 0 5 5 GLUD2 L468 5 KIRP
P53 3 103 3.33 0 26 26 TP53 I195 9 OV
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Domain Genes Position pValue S̄ Mut Top Gene 1 Top Gene 2 Top Cancer
(Table S1 Continued) (#) (-log10) (#) (# mut, gene, site) (# mut, gene, site) (# mut, cancer)

BicD 2 570 3.3 0.97 5 3 BICD2 R635 2 BICD1 R633 2 SKCM
Sox C TAD 4 208 3.22 0 4 4 SOX17 S403 4 UCEC
Pro isomerase 19 31 3.13 0.48 9 4 PPIAL4G R37 2 PPIG R41 7 SKCM
DUF3497 11 3 2.91 0.40 7 4 BAI3 R588 2 ELTD1 K132 4 SKCM
PI3K p85B 3 78 2.88 0 9 9 PIK3CA R108 4 UCEC
MT 15 36 2.79 0.14 8 7 DNAH5 D3236 1 DNAH11 H3139 8 SKCM
VHL 2 32 2.71 0 9 9 VHL L89 9 KIRC
Choline transpo 5 186 2.56 0.42 5 3 SLC44A1 R437 2 SLC44A4 R496 1 BRCA
bZIP 2 9 21 2.4 0.61 6 2 HLF R243 2 NFIL3 R91 2 UCEC
Fork head 42 88 2.4 0.46 11 3 FOXP1 R514 2 FOXJ1 R170 4 COADREAD
Kelch 1 116 12 2.23 0.45 19 6 KEAP1 R470 2 KEAP1 G423 6 LUSC
GTP EFTU D3 8 105 2.18 0 6 6 EEF1A1 T432 5 LIHC
Annexin 44 32 2.17 0.54 10 2 ANXA1 R303 2 ANXA1 R72 2 BRCA
Acyl-CoA dh 1 12 79 2.08 0 6 6 ACADS R330 2 KIRC
ATP-synt ab C 5 42 2.04 0.31 5 4 ATP5B K459 1 ATP6V1B2 K457 2 COADREAD
Cu amine oxidN2 3 62 2.03 0.95 4 2 AOC2 I123 1 ABP1 V100 1 COADREAD
Sec23 trunk 6 188 2 0.28 5 4 SEC23B R313 1 SEC24C N665 2 SKCM
Glyco hydro 18 7 350 2 0 6 6 CHIT1 A359 5 LIHC
CUB 142 45 1.92 0.57 22 3 CSMD3 R100 2 CSMD1 D1487 10 SKCM
RunxI 3 45 1.85 0 3 3 RUNX2 P466 2 KIRC
PI3K p85B 3 8 1.77 0.34 8 7 PIK3CA R38 1 PIK3CB R48 5 UCEC
Perilipin 6 341 1.77 0 5 5 PLIN5 R306 5 ACC
RRM 6 41 2 1.77 0.58 10 2 GRSF1 R153 1 ESRP1 R329 3 SKCM
K tetra 49 110 1.76 0.52 10 2 KCTD7 R112 2 KCTD9 R153 2 BRCA
MYT1 4 39 1.73 0.75 4 2 MYT1L R659 1 MYT1 R598 1 COADREAD
UNC45-central 2 3 1.66 0 3 3 UNC45A R289 1 KIRP
DIE2 ALG10 2 389 1.66 0.81 4 3 ALG10 R416 1 ALG10B R416 4 SKCM
BAAT C 5 108 1.65 0.43 4 2 ACOT4 P310 2 BAAT P312 4 SKCM
Pkinase 367 279 1.6 0.58 33 2 IKBKE R134 2 MAP3K4 R1462 6 SKCM
BCL N 3 51 1.6 0.58 3 2 BCL7A T52 1 BCL7B T52 2 COADREAD
Xylo C 2 142 1.59 0 4 4 XYLT1 R754 1 BRCA
Tmemb 161AB 2 98 1.56 1.00 4 2 TMEM161A R98 2 TMEM161B H99 2 GBM
P53 3 146 1.54 0.16 23 22 TP53 C238 1 TP63 C308 4 BRCA
Creb binding 2 99 1.5 0.81 4 3 CREBBP R2104 1 EP300 R2088 2 PRAD
FerI 5 50 1.47 0.43 4 2 FER1L6 T215 2 OTOF T388 2 BRCA
MT-A70 3 115 1.42 0 4 4 METTL14 R298 4 UCEC
NT-C2 4 39 1.41 0 4 4 EHBP1L1 R50 2 UCEC
Myosin head 39 23 1.39 0.59 10 2 MYO18A R428 1 MYH4 R109 3 LUAD
ADAM spacer1 23 112 1.38 0.46 9 4 ADAMTS2 G824 2 ADAMTS12 Q800 3 SKCM
Cadherin 2 58 44 1.37 0.62 15 2 PCDHA7 R62 2 PCDHGA9 R62 3 COADREAD
CAMSAP CH 2 55 1.36 0 3 3 ASPM T1172 1 HNSC
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Table S2. Supplemental spreadsheet. Related to Table 2 and Figure S3. Systematic analysis
of mutation hotspots identified through a domain- or a gene-centric approach. Listed are
potential mutation hotspots identified in domain-containing genes either through a domain-based
(pVal Domain) or a gene-based (pVal Gene) approach using binomial statistics and correcting for
multiple hypothesis testing (Bonferroni). The number of mutations in the domain hotspot (Mut
Domain) as well as the number of mutations in the gene of interest (Mut Gene) are listed. Only
genes with more than two mutations at the same site are considered. Table S2 can be found as a
supplemental spreadsheet.
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